DPP - Thermal Expansion

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/86

https://youtu.be/IQdONu4hPfI

https://physicsaholics.com/note/notesDetalis/25

Q 1. The co-efficient of linear expansion of iron is $11 / 180$ of volume coefficient of expansion of mercury which is $18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. An iron rod is 10 m long at $27^{\circ} \mathrm{C}$. The length of the rod will be decreased by 1.1 mm then the temperature of the rod changes by:
(a) $0^{\circ} \mathrm{C}$
(b) $10^{\circ} \mathrm{C}$
(c) $20^{\circ} \mathrm{C}$
(d) $170{ }^{\circ} \mathrm{C}$

Q 2. At $50^{\circ} \mathrm{C}$, a brass rod has a length 50 cm and a diameter 2 mm . It is joined to a steel rod of the same length and diameter at the same temperature. The change in the length of the composite rod when it is heated to $250^{\circ} \mathrm{C}$ is. (Coefficient of linear expansion of brass $=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$, coefficient of linear expansion of steel $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$)
(a) 0.28 cm
(b) 0.30 cm
(c) 0.32 cm
(d) 0.34 cm

Q 3. A rod of length 2 m is at a temperature of $20^{\circ} \mathrm{C}$. find the free expansion of the rod, if the temperature is increased to $50^{\circ} \mathrm{C}$:
$\left(\alpha=15 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$
(a) 0.9 mm
(b) 9 mm
(c) 9 cm
(d) 1.9 mm

Q 4. Density of substance at $0{ }^{\circ} \mathrm{C}$ is $10 \mathrm{gm} / \mathrm{cc}$ and at $100^{\circ} \mathrm{C}$, its density is $9.7 \mathrm{gm} / \mathrm{cc}$. The coefficient of linear expansion of the substance will be:
(a) 10^{2}
(b) 10^{-2}
(c) 10^{-3}
(d) 10^{-4}

Q 5. The coefficient of volume expansion of a liquid is $4.9 \times 10^{-4} / \mathrm{K}$. Calculate the fractional change in its density when the temperature is raised by $30^{\circ} \mathrm{C}$:
(a) 1.5×10^{2}
(b) 1.5×10^{-2}
(c) 1.5×10^{-3}
(d) 1.5×10^{-4}

Q 6. A steel tape 1 m long is correctly calibrated for a temperature of $27^{\circ} \mathrm{C}$. The length of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the temperature is $45^{\circ} \mathrm{C}$. Coefficient of linear expansion of steel $=1.20 \times 10^{-5} / \mathrm{K}$. what is the actual length of the steel rod on that day?
(a) 63.0136 cm
(b) 63.2134 cm
(c) 63.1526 cm
(d) 63.3136 cm

Q 7. A rod has variable co-efficient of linear expansion $\alpha=\frac{x}{5000}$ (x is in metre). If length of the rod is 1 m . Determine increase in length of the rod in (cm) on increasing temperature of the rod by $100^{\circ} \mathrm{C}$:

(a) 1.01
(b) 0.1
(c) 0.01
(d) 1

Q 8. The coefficient of linear expansion of a crystal in one direction is α_{1} and hat in every direction perpendicular to it is α_{2}. The coefficient of cubical expansion is:
(a) $\alpha_{1}+\alpha_{2}$
(b) $2 \alpha_{1}+\alpha_{2}$
(c) $\alpha_{1}+2 \alpha_{2}$
(d) None of above

Q 9. Coefficient of volume expansion of mercury is $0.18 \times 10^{-3} /{ }^{\circ} \mathrm{C}$. If the density of mercury at $0{ }^{\circ} \mathrm{C}$ is $13.6 \mathrm{~g} / \mathrm{cc}$ then its density at $200{ }^{\circ} \mathrm{C}$ is:
(a) $13.11 \mathrm{~g} / \mathrm{cc}$
(b) $52.11 \mathrm{~g} / \mathrm{cc}$
(c) $16.11 \mathrm{~g} / \mathrm{cc}$
(d) $26.11 \mathrm{~g} / \mathrm{cc}$

Q 10. The real coefficient of volume expansion of glycerin is $0.000597 V^{\circ} \mathrm{C}$ and linear coefficient of expansion of glass is $0.000009 /{ }^{\circ} \mathrm{C}$. Then the apparent volume coefficient of expansion of glycerin in a container of glass is:
(a) $0.000558 /{ }^{\circ} \mathrm{C}$
(b) $0.00057 /{ }^{\circ} \mathrm{C}$
(c) $0.00027 /{ }^{\circ} \mathrm{C}$
(d) $0.00066 /{ }^{\circ} \mathrm{C}$

Q 11. The coefficient of linear expansion of a metal is $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The percentage increase in area of a square plate of that metal when it is heated through $100^{\circ} \mathrm{C}$ is:
(a) 0.02%
(b) 0.1%
(c) 0.001%
(d) 0.2%

Q 12. A metalplate of area $1.2 \mathrm{~m}^{2}$ increases its area by $2.4 \times 10^{-4} \mathrm{~m}^{2}$ when it is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The coefficient of cubical expansion of the metal expressed in per ${ }^{\circ} \mathrm{C}$ is:
(a) 2×10^{-6}
(b) 4×10^{-6}
(c) 6×10^{-6}
(d) 3×10^{-6}

Q 13. The length of a metal rod at $0^{\circ} \mathrm{C}$ is 0.5 m . When it is heated, its length increases by 2.7 mm . The final temperature of rod is (coeff. Of linear expansion of metal $=$ $90 \times 10^{-6} /{ }^{\circ} \mathrm{C}$):
(a) $20^{\circ} \mathrm{C}$
(b) $30^{\circ} \mathrm{C}$
(c) $40^{\circ} \mathrm{C}$
(d) $60^{\circ} \mathrm{C}$

Q 14. A liquid with coefficient of volume expansion γ is filled in a container of a material having coefficient of linear expansion α. If the liquid overflows on heating, then:
(a) $\gamma=3 \alpha$
(b) $\gamma>3 \alpha$
(c) $\gamma<3 \alpha$
(d) $\gamma=\alpha^{3}$

Q 15. At $20^{\circ} \mathrm{C}$ a liquid is filled upto 10 cm height in a container of glass of length 20 cm and cross-sectional area $100 \mathrm{~cm}^{2}$. Scale is marked on the surface of container. This scale gives correct reading at $20^{\circ} \mathrm{C}$. Given $\gamma_{L}=5 \times 10^{-5} / \mathrm{K}, \alpha_{g}=1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The actual height of liquid at $40^{\circ} \mathrm{C}$ is:
(a) 10.01 cm
(b) 10.006 cm
(c) 10.6 cm
(d) 10.1 cm

Q 16. A uniform metal rod is used as a bar pendulum. If the room temperature rises by $10^{\circ} \mathrm{C}$, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per ${ }^{\circ} \mathrm{C}$, the period of the pendulum will have percentage increase of:
time period of pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$
(a) -2×10^{-3}
(b) 1×10^{-3}
(c) -1×10^{-3}
(d) 2×10^{-3}

Answer Key

Q. 1	b	Q. 2	c	Q. 3	a	Q. 4	d	Q. 5	b
Q. 6	a	Q. 7	d	Q. 8	c	Q. 9	a	Q.10	b
Q.11	d	Q.12	d	Q.13	d	Q.14	b	Q.15	b
Q.16	b								

